Towards a Solar Economy

Image for Towards a Solar Economy

The B117 Theatre, Melbourne School of Design
Parkville Vic 3010

Map

More Information

Ashley Johnson

johnson.a@unimelb.edu.au

T: +61 3 8344 6874

Fossil resources have played an unprecedented role in human history.  The availability of fossil energy in high volumetric density has propelled human civilization at an unprecedented rate for more than two centuries. However, in spite of recent surge in fossil resource availability, with the ever increasing rate of energy demand, it is certain that we will eventually need a sustainable source of energy. The solar energy is one such source, it is plentiful, and its use can meet our daily needs for food, chemicals, heat, electricity and transportation for any foreseeable future.

The challenge with the transition from a fossil resource based economy to a solar economy is that we have to learn to harness, transform and store solar energy at the time scale of our use pattern.   This has been a problem due to dilute intensity of solar irradiation and its intermittent availability.  Thus the methods to collect and transform solar energy have to be both efficient and low-cost for wide spread use.  In this presentation, we will discuss these challenges and our interdisciplinary approach for finding potential solutions. We will present sustainable solutions for transportation, production of fuels and chemicals, large scale storage and around the clock power generation.  We will also discuss how co production and use of hydrogen and electricity can be enablers for the entire solar economy.  Finally, a case for local photons to meet local needs will be made.

Indeed, we are living in an exciting time as we continue to debate and prepare for the eventual transition from a fossil based economy to a sustainable economy based on solar energy.  The goal of this presentation is to share some of this excitement from my own experiences.

About the speaker

Rakesh Agrawal is the Winthrop E. Stone Distinguished Professor in the Davidson School of Chemical Engineering at Purdue University. He received a B. Tech. from the Indian Institute of Technology, Kanpur, an M.Ch.E. from the University of Delaware and an Sc.D. in chemical engineering from MIT.

His research includes novel processes for the fabrication of low-cost thin-film solar cells, energy systems analysis, biomass to liquid fuel conversion, synthesis of efficient multicomponent separation processes using distillation, membranes and adsorption, and basic and applied research in gas separations and liquefaction. Agrawal has published 184 technical papers and has given over 230 invited lectures. He holds 125 U.S. and more than 500 foreign patents. These patents are used in over one hundred chemical plants with total capital expenditure in multibillion dollars. He has served on technology and engineering advisory boards of a number of companies.

Agrawal has received dozens of awards and honors, including Purdue’s Shreve Award for teaching excellence and the Morrill Award for excellence in research, teaching and service. From the AIChE he has received Gerhold award in separations, the Institute Award for Excellence in Industrial Gases Technology, the Chemical Engineering Practice Award, Alpha Chi Sigma and the Founders Award. Last year he delivered Peter V. Danckwerts Lecture at the 10th World Congress of Chemical Engineering.

He is a member of the U.S. National Academy of Engineering, a Fellow of the American Academy of Arts and Sciences, a Fellow of the US National Academy of Inventors and a Fellow of the Indian National Academy of Engineering. Agrawal received the National Medal of Technology and Innovation from President Obama in 2011.

Receive the latest in energy news from across the University Subscribe here