Unified Grid-Forming/ Following Converter Control

Ian A. Hiskens

Vennema Professor of Engineering Professor, Electrical Engineering and Computer Science University of Michigan, Ann Arbor

Acknowledge Sijia Geng, University of Michigan

Melbourne Energy Institute May 26, 2022

Overview

- Energy storage
 - Electric vehicles
 - Grid applications
- Grid-forming/following converters
- Grid modelling
 - Rotating dq-frame references
 - Steady-state conditions
- Examples
- Experiments

Electric vehicles (EVs)

- Around 1 million passenger vehicles are sold in Australia annually.
 - They are designed to last around 10 years, and so are their batteries.
- Average mass of lithium-ion batteries per EV is around 400kg.
- Moving to 100% EVs would result in disposal of around 400,000 tonnes of batteries per year.
- No economic "second life" applications (currently).
- Used batteries are crushed into "black mass".
- No cost-effective process for recycling (currently).
- Current shortages of raw materials are leading to significant price increases.
- No mechanism for tracking whether materials are ethically sourced (e.g. cobalt).
- Given the current generation mix in Australia, EVs may be responsible for more carbon emissions than traditional vehicles.
 - Depending on when they are charged.

Other thoughts on EVs

- EVs are fine for around town but not well suited for long distance travel.
- When fueling a regular vehicle, the energy is delivered at ~5MW.
 - Takes 5 minutes to deliver sufficient energy to drive 700km.
 - The equivalent for an EV would be \sim 1MW.
- The highest powered "DC fast chargers" are capable of 250kW (currently).
 - Fast charging reduces battery life.
- Large-scale coincident charging of EVs is extremely challenging for the distribution network.
- If EVs are primarily for use around town, why not invest in public transport rather than subsidizing EVs?
- "Range anxiety" is real when venturing into the country.
- Short-term solution: Plug-in hybrid electric vehicles.
- Long-term solution: hydrogen powered fuel-cell vehicles.
 - Storage of hydrogen is challenging.

Renewable generation

- Solar farms require around 1.5 ha to produce 1MW of electricity.
 - A 1000MW solar farm would require 15 sq km.
- Wind farms require around 20 ha to produce 1MW of electricity.
 - The base of each turbine requires around 600 cubic metres of concrete.
 - Gearboxes are vulnerable.
- Significant new transmission will be required to support renewable generation.

Bulk energy storage

- Energy usage between sunset and sunrise is ~300GWh.
 - That will grow significantly with electrification of cooking and heating, and overnight charging of EVs.
- Presumably a significant amount of that energy will be produced by solar PV during the day and stored.
- Assume solar PV contributes half the overnight energy usage, then storage of ~150GWh is required.
 - Equivalent to ~1500 Hornsdale "Big" batteries.
 - Batteries degrade and must be replaced every 10-15 years.
- What will make up the remainder?
 - Over the period under consideration, wind contributed ~32GWh.
- Pumped hydro storage provides a much more sustainable solution than batteries.
 - Lifespan of 80 years.

Pumped hydro storage

Borumba pumped hydro (proposed)

- Near Gympie, Queensland
- Power, 1500MW
- Energy storage, 30GWh

Kidston pumped hydro (under construction)

- Utilizes an old gold mine by transferring water from one pit to the other.
- Power, 250MW
- Energy storage, 2GWh

Power system integration of renewables

- Power systems will never be 100% inverter based.
- Inverter-based resources must interact well with synchronous machines.
- Damping of inter-machine and inter-area modal oscillations relies on power system stabilizers (PSSs).
- The damping provided by PSSs is dependent on a phase shift that is system dependent.
- Achieving robustness to huge variations in system conditions (e.g. GW of solar during the day and zero at night) is extremely difficult.

Grid forming/following inverters

- Grid forming
 - Frequency droop control

Top two figures are from: Li, Gu, Green, "Revisiting grid-forming and grid following inverters: A duality theory", IEEE Transactions on Power Systems, 2022.

- Grid following
 - Phase-locked loop (PLL)

Grid forming with PLL

- The control scheme incorporates both a PLL and power-frequency ($p \omega$) droop.
 - This hybrid control strategy inherits desirable characteristics of both grid-forming and grid-following inverters.

PLL start-up

 Achieving black-start (grid forming) with PLL-based control.

- 1) With the circuit breaker (CB) open, energize the power electronic inverter at a fixed frequency determined by an internal oscillator. This will energize the LC filter (which is disconnected from the grid).
- 2) Synchronize the PLL to the filter voltage v_t and switch inverter voltage control from the fixed-frequency oscillator to the PLL.
- 3) Close the circuit breaker to energize the network. As with black-start of any source, the load on the network must be compatible with the capability of the inverter-based source.
 - If connecting to an energized network, use a synchronismcheck relay.

Rotating reference frames

Active power dynamics

• PLL dynamics

$$\dot{\xi} = \theta_{t} - \theta_{pll}$$
$$\omega_{pll} = K_{pll,p}(\theta_{t} - \theta_{pll}) + K_{pll,i}\xi$$
$$\dot{\theta}_{pll} = (\omega_{pll} + \omega_{0} - \omega_{DQ})\omega_{b}$$

 The last equation expresses the difference in the rotational velocities of the dq-frame and the DQ-frame.

- Driving $\theta_t-\theta_{pll}$ to zero is equivalent to aligning the d-axis of the local dq-frame with the terminal voltage v_t .
- Active power droop characteristic

$$p^* = p^0 - m_p \omega_{\text{pll}}$$

where p^0 is the active power set-point at nominal frequency ω_0 .

• Active power control

$$\dot{\delta} = K_{\rm p,i}(p^* - p_t)$$

where δ is (effectively) the phase difference across the filter inductance.

Michigan**Engineering**

Transforming to a common reference

- Each inverter is described relative to its own (local) dq-frame.
 - This is conceptually the same as for synchronous generators.
- Assembling the complete system requires all inverters (and generators) to be referenced to the global DQ-frame.
- Define the rotation matrix,

$$\mathcal{R}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

where θ denotes the angle of the local dq-frame with respect to the global DQ-frame.

- The angle of the inverter local dq-frame is specified by the PLL angle $\theta_{\rm pll}$ giving,

$$\begin{bmatrix} v_{\rm t}^{\rm D} \\ v_{\rm t}^{\rm Q} \end{bmatrix} = \mathcal{R}(\theta_{\rm pll}) \begin{bmatrix} v_{\rm t}^{\rm d} \\ v_{\rm t}^{\rm q} \end{bmatrix}, \qquad \begin{bmatrix} i_{\rm t}^{\rm D} \\ i_{\rm t}^{\rm Q} \end{bmatrix} = \mathcal{R}(\theta_{\rm pll}) \begin{bmatrix} i_{\rm t}^{\rm d} \\ i_{\rm t}^{\rm q} \end{bmatrix}$$

Dynamic line modelling

• Consider a three-phase RL branch,

$$\boldsymbol{v}^{\mathrm{abc}} = L \frac{d}{dt} \boldsymbol{i}^{\mathrm{abc}} + R \boldsymbol{i}^{\mathrm{abc}}$$

where $v^{abc} = [v_a \ v_b \ v_c]^{\mathsf{T}}$ is the vector of voltages across the branch and $i^{abc} = [i_a \ i_b \ i_c]^{\mathsf{T}}$ is the vector of currents.

• This can be viewed from a DQ rotating reference frame using the transformation $v^{DQ0} = T_{\theta}v^{abc}$ and $i^{DQ0} = T_{\theta}i^{abc}$, where

$$T_{\theta} = \frac{2}{3} \begin{bmatrix} \cos \theta & \cos(\theta - \frac{2\pi}{3}) & \cos(\theta + \frac{2\pi}{3}) \\ -\sin \theta & -\sin(\theta - \frac{2\pi}{3}) & -\sin(\theta + \frac{2\pi}{3}) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

• The resulting model in the DQ-frame,

$$\dot{i}^{\rm D} = \frac{\omega_{\rm b}}{l_{\rm pu}} v^{\rm D} + \omega_{\rm DQ} \omega_{\rm b} i^{\rm Q} - \frac{r_{\rm pu} \omega_{\rm b}}{l_{\rm pu}} i^{\rm D}$$
$$\dot{i}^{\rm Q} = \frac{\omega_{\rm b}}{l_{\rm pu}} v^{\rm Q} - \omega_{\rm DQ} \omega_{\rm b} i^{\rm D} - \frac{r_{\rm pu} \omega_{\rm b}}{l_{\rm pu}} i^{\rm Q}$$

where $\omega_{DQ}\omega_b = d\theta/dt$ is the frequency (rotational velocity) of the DQ-frame.

Michigan**Engineering**

Steady state

• From previous slide,

$$\dot{i}^{\rm D} = \frac{\omega_{\rm b}}{l_{\rm pu}} v^{\rm D} + \omega_{\rm DQ} \omega_{\rm b} i^{\rm Q} - \frac{r_{\rm pu} \omega_{\rm b}}{l_{\rm pu}} i^{\rm D}$$
$$\dot{i}^{\rm Q} = \frac{\omega_{\rm b}}{l_{\rm pu}} v^{\rm Q} - \omega_{\rm DQ} \omega_{\rm b} i^{\rm D} - \frac{r_{\rm pu} \omega_{\rm b}}{l_{\rm pu}} i^{\rm Q}$$
$$\left(\omega_{DQ} \omega_{b} = d\theta / dt \right)$$

• If ω_{DQ} is chosen equal to the steady-state frequency ω_{ss} then at steady state $\dot{i}^D = \dot{i}^Q = 0$ giving,

$$v^{\rm D} = r_{pu} i^{\rm D} - \omega_{\rm ss} l_{pu} i^{\rm Q}$$

$$v^{\rm Q} = r_{pu} i^{\rm Q} + \omega_{\rm ss} l_{pu} i^{\rm D}$$
(*)

- If $\omega_{DQ} \neq \omega_{ss}$ then an oscillatory (limit cycle) steady-state results with $\dot{i}^{\rm D} = -(\omega_{\rm ss} \omega_{\rm DQ})\omega_{\rm b}i^{\rm Q}$ and $\dot{i}^{\rm Q} = (\omega_{\rm ss} \omega_{\rm DQ})\omega_{\rm b}i^{\rm D}$.
- Substitution and manipulation again gives (*), which can be rewritten, $(v^{\rm D} + jv^{\rm Q}) = (r_{pu} + j\omega_{\rm ss}l_{pu})(i^{\rm D} + ji^{\rm Q})$
- This is exactly the phasor representation, but with frequency ω_{ss} rather than the nominal frequency ω_0 .

Example: single inverter

• Consider a single inverter connected to a Thevenin equivalent network.

Two inverters at a common bus

• The proportion of grid-forming and grid-following is weight by α and $(1 - \alpha)$ respectively.

Michigan Engineering

Microgrid dynamics

Four-bus microgrid connected to the main grid via a synchronism-check relay/breaker.

۲

Disconnection/reconnection

Conclusions

- The proposed hybrid inverter control scheme incorporates both power-frequency droop and a phase-locked loop (PLL).
- It inherits beneficial characteristics from both gridforming and grid-following controls.
 - Achieves robust operation over a wide range of system conditions.
- There is still much to discover:
 - Impact of inverter-based resources on modal oscillations.
 - The role of the network in sustaining/destabilizing oscillations.
 - Modelling large aggregations of small inverters.