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Electric vehicles (EVs)

« Around 1 million passenger vehicles are sold in Australia annually.
— They are designed to last around 10 years, and so are their batteries.

* Average mass of lithium-ion batteries per EV is around 400kg.

* Moving to 100% EVs would result in disposal of around
400,000 tonnes of batteries per year.

« No economic “second life” applications (currently).
« Used batteries are crushed into “black mass”.
« No cost-effective process for recycling (currently).

« Current shortages of raw materials are leading to significant price
increases.

* No mechanism for tracking whether materials are ethically
sourced (e.g. cobalt).

« Given the current generation mix in Australia, EVs may be
responsible for more carbon emissions than traditional vehicles.

— Depending on when they are charged.
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Other thoughts on EVs

« EVs are fine for around town but not well suited for long distance travel.

« When fueling a regular vehicle, the energy is delivered at ~5MW.
— Takes 5 minutes to deliver sufficient energy to drive 700km.
— The equivalent for an EV would be ~1MW.

* The highest powered “DC fast chargers” are capable of 250kW (currently).

— Fast charging reduces battery life.

« Large-scale coincident charging of EVs is extremely challenging for the
distribution network.

« If EVs are primarily for use around town, why not invest in public transport
rather than subsidizing EVs?

*  “Range anxiety” is real when venturing into the country.

« Short-term solution: Plug-in hybrid electric vehicles.

« Long-term solution: hydrogen powered fuel-cell vehicles.
— Storage of hydrogen is challenging.
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Renewable generation

« Solar farms require around 1.5 ha to produce 1MW of electricity.
— A 1000MW solar farm would require 15 sgq km.

« Wind farms require around 20 ha to produce 1MW of electricity.
— The base of each turbine requires around 600 cubic metres of concrete.
— Gearboxes are vulnerable.

« Significant new transmission will be required to support renewable generation.

= Generation MW Av. 22,999 MW

Energy requirements between
sunset and sunrise are ~300GWh.

Sun n Tue
22 May 23 May 24 M.

C . - ~ Source: opennem.org.au
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Bulk energy storage

* Energy usage between sunset and sunrise is ~300GWh.

— That will grow significantly with electrification of cooking and heating, and overnight
charging of EVs.

* Presumably a significant amount of that energy will be produced by solar
PV during the day and stored.

« Assume solar PV contributes half the overnight energy usage, then storage
of ~150GWh is required.

— Equivalent to ~1500 Hornsdale “Big” batteries.
— Batteries degrade and must be replaced every 10-15 years.

«  What will make up the remainder?
— Over the period under consideration, wind contributed ~32GWh.

* Pumped hydro storage provides a much more sustainable solution than
batteries.
— Lifespan of 80 years.
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Pumped hydro storage

Borumba pumped hydro (proposed)
« Near Gympie, Queensland Kidston pumped hydro (under construction)

- Power, 1500MW « Utilizes an old gold mine by transferring water

« Energy storage, 30GWh from one pit to the other.
 Power, 250MW

« Energy storage, 2GWh
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Power system integration of renewables

* Power systems will never be 100% inverter based.

* |nverter-based resources must interact well with
synchronous machines.

- Damping of inter-machine and inter-area modal
oscillations relies on power system stabilizers
(PSSs).

« The damping provided by PSSs is dependent on a
phase shift that is system dependent.

* Achieving robustness to huge variations in system
conditions (e.g. GW of solar during the day and zero
at night) is extremely difficult.
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Grid forming/following inverters
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Grid forming with PLL
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* The control scheme incorporates both a PLL and
power-frequency ( p —w) droop.

— This hybrid control strategy inherits desirable characteristics
of both grid-forming and grid-following inverters.
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1) With the circuit breaker (CB) open, energize the power
electronic inverter at a fixed frequency determined by an
internal oscillator. This will energize the LC filter (which is
disconnected from the grid).

2) Synchronize the PLL to the filter voltage v; and switch

inverter voltage control from the fixed-frequency oscillator
to the PLL.

3) Close the circuit breaker to energize the network. As with
black-start of any source, the load on the network must be
compatible with the capability of the inverter-based source.

 If connecting to an energized network, use a synchronism-
check relay.
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Rotating reference frames
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Active power dynamics

PLL dynamics

.

§ =0, —0m
wpn = Kpn,p(0s — 0p11) + Ko ié

Opn = (wpil + Wo — WpQ)Wh

— The last equation expresses the difference
in the rotational velocities of the dg-frame

and the DQ-frame.

— Driving 6, — 6, to zero is equivalent to aligning the d-axis of the local dg-frame with
the terminal voltage vy .

Active power droop characteristic
p’ = po — MpWpll
where p° is the active power set-point at nominal frequency wy .
Active power control
o= Kp,i(p* —pt)
where ¢ is (effectively) the phase difference across the filter inductance.
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Transforming to a common reference

- Each inverter is described relative to its own (local) dg-frame.
— This is conceptually the same as for synchronous generators.

« Assembling the complete system requires all inverters (and
generators) to be referenced to the global DQ-frame.

« Define the rotation matrix,
R(0) = [

where 6 denotes the angle of the local dg-frame with respect to
the global DQ-frame.

- The angle of the inverter local dg-frame is specified by the PLL
angle 6, giving,

cosf) —sinéb
sinf cosf
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Dynamic line modelling

Consider a three-phase RL branch,

,vabc — L%iabc 4+ R,I:abc

where v**° = [v, v, v.|T is the vector of voltages across the
branch and i#>° = [;, i, i.]T IS the vector of currents.

This can be viewed from a DQ rotating reference frame using
the transformation v°<° = T,v*° and PQ° = 7,32, where

9 cos b cos(0 — %”) cos(0 + 27”)
Ty == | —sinf —sin(f — 2?77) —sin(6 + 2%)
3 1 1 1
2

2 2

The resulting model in the DQ-frame,

. Wh . TpuWhb .
P = 2P 4 wpqupi® — 24P
. Wh . TpuWh .
i = 299 — wpowpi® — 22249
l « l
pu pu

where wpouwpy = df/dt is the frequency (rotational velocity) of
the DQ-frame.
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Steady state

* From previous slide,

. w TouW
P = l—b’UD + wDwaiQ — I;u—biD
pu pu (wDwa — d@/dt)
. w Tr uw .
iQ::-—EUQ-—cuDQa%iD—— P sz

lou lou

« If wpg is chosen equal to the steady-state frequency w,, then at
steady state i© =9 =0 giving,

D

.D
VT = Tpyl

— wsslpuiQ
5 ()

v = rpuiQ + Wsslpu?

- If wpg # wss then an oscillatory (limit cycle) steady-state results
with P = —(wes — wDQ)wbz’Q and @ = (wss — wDQ)wbiD .

- Substitution and manipulation again gives (x), which can be
rewritten, (P 4 Q) = (Fpu 4 jwsslpu) (i° + 5i9)

« This is exactly the phasor representation, but with frequency w,,
rather than the nominal frequency wy .
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Example: single inverter

« Consider a single inverter connected

to a Thevenin equivalent network.
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Two Inverters at a common bus

« The proportion of grid-forming and
grid-following is weight by o and
(1 — o) respectively.
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Microgrid dynamics

Microgrid

« Four-bus microgrid connected to the vl
main grid via a synchronism-check 1, .

relay/breaker.
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Disconnection/reconnection
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Laboratory experiment

| | L L 1 1 1 1 1
L} z2 4 & L] ] 12 u 16 18 20

Microgrid started autonomously.

Subsequently connected to the grid,
and then disconnected from the grid.

(Experiments undertaken in 2008.)
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Conclusions

« The proposed hybrid inverter control scheme
incorporates both power-frequency droop and a
phase-locked loop (PLL).

* It inherits beneficial characteristics from both grid-
forming and grid-following controls.

— Achieves robust operation over a wide range of system
conditions.

* There is still much to discover:
— Impact of inverter-based resources on modal oscillations.

— The role of the network in sustaining/destabilizing
oscillations.

— Modelling large aggregations of small inverters.
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