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Solar Water Splitting



Solar Water Splitting

Benefits and challenges of renewables:

• Fossil fuels, CO2 emissions, climate change.

• Renewables, readily available, cost-competitive.

• Intermittency a challenge, storage methods needed.
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Solar Water Splitting

Molecular hydrogen H2:

• Very energy-dense chemical fuel (2.7× gasoline).

• Grey hydrogen, 3% of global CO2 emissions.

• Green hydrogen economy has been proposed.
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Solar Water Splitting

Water electrolysis:

• OER at the anode.
2H2O → O2 + 4H

+ + 4e−

• HER at the cathode.
2H+ + 2e− → H2

• Cell potential 1.23 V.

• +100 mV for the HER.

• +300 mV for the OER.

6



Solar Water Splitting

Challenges:

• Efficiency, stability, cost.

• Concentrated illumination can reduce material costs and improve 
energetics.

• Thermal management critical.

• Immersed devices, electrolyte can double as coolant.

• Transport heat from photoabsorbers to electrodes.

• All components maintain suitable temperatures.
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Cocatalyst Foils



Cocatalyst Foils

Earth-abundant cocatalysts:

• Transition metals and compounds.

• Often nanostructured and therefore opaque.

• Deposited via solution-based methods.

• Difficult to combine with semiconductors.
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Cocatalyst Foils

Fully decoupled photoelectrodes:

• Light absorption and catalysis are spatially decoupled during device 
operation.

• Cocatalyst deposition is decoupled from device fabrication

10

Adv. Energy Mater. 2022, 12, 2102752.



Cocatalyst Foils

Earth-abundant cocatalyst foils:

• NiMox/Ni foil HEC, deposited hydrothermally.

• NiFe(OH)x/Ni foil OEC, electrodeposited.

11



Cocatalyst Foils

Earth-abundant cocatalyst foils:

• NiMox flakes, NiFe(OH)x needles.

• Benchmark noble metal cocatalysts.
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Cocatalyst Foils

J-V characteristics in 1 M NaOH:

• NiMox/Ni foil nearly as good as Pt/Ni foil.

• NiFe(OH)x/Ni foil better than IrOx/Au/Ni foil.

• Collectively, earth-abundant cocatalyst foils as good as noble metals.
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Cocatalyst Foils

Stability in 1 M NaOH:

• Very stable over 3 days.

• Faradaic efficiency very close to 100%.
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GaAs Artificial Leaf



GaAs Artificial Leaf

GaAs cells:

• Two cells in series required for solar water splitting.

• Direct band gap, can have thin film solar cells, concentrated illumination.
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GaAs Artificial Leaf

Construction of artificial leaf:

• Two GaAs cells in series.

• Fully decoupled photoanode.

• Wired photocathode.

• Ag bars, Ag paint, glass, epoxy.
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GaAs Artificial Leaf

J-V characteristics in 1 M NaOH:

• 11.04 mA/cm2 at 0 V.

• STH efficiency 13.6%.
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GaAs Artificial Leaf

Stability in 1 M NaOH:

• T1, T2, electrolyte replenished, lamp intensity reset.

• Epoxy delaminated at T2, GaAs cells corroded at T3.

• STH efficiency of over 10% for longer than 9 days.
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GaAs Artificial Leaf

Comparison with previously 
reported devices:

• Systems measured under 1 sun.

• Most efficient with >7 days 
stability.

• Most efficient with earth-
abundant cocatalysts.
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Triple-Junction Device



Triple-Junction Device

Triple-junction cells:

• More subcells, higher PV efficiency.

• Double-junction cells “best” for solar water splitting.

• Triple-junction cells, excess photovoltage.

• Can adjust the ratio of cells to electrolysers.
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Triple-Junction Device

Triple-junction cells:

• Supplied by MicroLink Devices.

• InGaP/InGaAs/Ge.
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Triple-Junction Device

Construction of triple-junction device:

• Fully decoupled photoanodes with NiFe(OH)x/Ni foil.

• NiMox/Ni foam cathodes (not pictured).

• Three photoanodes, four electrochemical cells.
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Triple-Junction Device

J-V characteristics in 1 M NaOH:

• Each photoanode provides over 2 V.

• Each electrochemical cell requires 1.55 V.

• Components in series add linearly.

• 3 photoanodes, 4 electrochemical cells, STH 20.7%.
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Triple-Junction Device

Stability in 1 M NaOH:

• >20% STH maintained for 40 hours, but epoxy not suitable for long-term 
stability.

• Single photoanode with better epoxy maintains very stable photocurrent 
for nearly 9 days.
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Triple-Junction Device

Comparison with previously reported devices:

• Compares very favourably with other systems, both immersed and PV-EC.

• STH exceeded only by systems operating under concentrated illumination.
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Conclusion and Outlook

Fully decoupled photoelectrodes:

• Constructed using cocatalyst foils.

• Efficient, stable, earth-abundant.

• Paves the way for immersed devices operating under concentrated 
illumination.
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