

Melbourne Energy Institute

Artificial Leaf for Hydrogen Production

Presenter: Joshua Butson, University of Melbourne

- 1. Solar Water Splitting
- 2. Cocatalyst Foils
- 3. GaAs Artificial Leaf
- 4. Triple-Junction Device
- 5. Conclusion and Outlook
- 6. Acknowledgements

Solar Water Splitting

Benefits and challenges of renewables:

- Fossil fuels, CO₂ emissions, climate change.
- Renewables, readily available, cost-competitive.
- Intermittency a challenge, storage methods needed.

4

Nat. Clim. Chang. 2017, 7, 243; IEEE Trans. Smart Grid 2012, 3, 850.

Molecular hydrogen H₂:

- Very energy-dense chemical fuel (2.7× gasoline).
- Grey hydrogen, 3% of global CO₂ emissions.
- Green hydrogen economy has been proposed.

Water electrolysis:

- OER at the anode. $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$
- HER at the cathode. $2H^+ + 2e^- \rightarrow H_2$
- Cell potential 1.23 V.
- +100 mV for the HER.
- +300 mV for the OER.

Potential

Challenges:

- Efficiency, stability, cost.
- Concentrated illumination can reduce material costs and improve energetics.
- Thermal management critical.
- Immersed devices, electrolyte can double as coolant.
- Transport heat from photoabsorbers to electrodes.
- All components maintain suitable temperatures.

Cocatalyst Foils

Earth-abundant cocatalysts:

- Transition metals and compounds.
- Often nanostructured and therefore opaque.
- Deposited via solution-based methods.
- Difficult to combine with semiconductors.

Chem. Soc. Rev. 2014, 43, 7787; Nat. Rev. Chem. 2017, 1, 0003; Adv. Mater. 2020, 32, 1806326.

Fully decoupled photoelectrodes:

- Light absorption and catalysis are spatially decoupled during device operation.
- Cocatalyst deposition is decoupled from device fabrication

Adv. Energy Mater. 2022, 12, 2102752.

Earth-abundant cocatalyst foils:

- NiMo_x/Ni foil HEC, deposited hydrothermally.
- NiFe(OH)_x/Ni foil OEC, electrodeposited.

Earth-abundant cocatalyst foils:

- NiMo_x flakes, NiFe(OH)_x needles.
- Benchmark noble metal cocatalysts.

J-V characteristics in 1 M NaOH:

- NiMo_x/Ni foil nearly as good as Pt/Ni foil.
- NiFe(OH)_x/Ni foil better than IrO_x /Au/Ni foil.
- Collectively, earth-abundant cocatalyst foils as good as noble metals.

Stability in 1 M NaOH:

- Very stable over 3 days.
- Faradaic efficiency very close to 100%.

GaAs Artificial Leaf

GaAs cells:

- Two cells in series required for solar water splitting.
- Direct band gap, can have thin film solar cells, concentrated illumination.

Construction of artificial leaf:

- Two GaAs cells in series.
- Fully decoupled photoanode.
- Wired photocathode.
- Ag bars, Ag paint, glass, epoxy.

J-V characteristics in 1 M NaOH:

$$\eta_{\text{STH}} = \frac{1.23 \text{ (V)} \times J \text{ (mA/cm2)} \times \eta_{\text{F}}}{P_{\text{in}} \text{ (mW/cm2)}}$$

- 11.04 mA/cm² at 0 V.
- STH efficiency 13.6%.

Stability in 1 M NaOH:

- T1, T2, electrolyte replenished, lamp intensity reset.
- Epoxy delaminated at T2, GaAs cells corroded at T3.
- STH efficiency of over 10% for longer than 9 days.

Comparison with previously reported devices:

- Systems measured under 1 sun.
- Most efficient with >7 days stability.
- Most efficient with earthabundant cocatalysts.

Triple-Junction Device

Triple-junction cells:

- More subcells, higher PV efficiency.
- Double-junction cells "best" for solar water splitting.
- Triple-junction cells, excess photovoltage.
- Can adjust the ratio of cells to electrolysers.

Nat. Commun. 2016, **7**, 13237; Appl. Phys. Express 2015, **8**, 107101.

Triple-junction cells:

- Supplied by MicroLink Devices.
- InGaP/InGaAs/Ge.

Construction of triple-junction device:

- Fully decoupled photoanodes with $NiFe(OH)_x/Ni$ foil.
- NiMo_x/Ni foam cathodes (not pictured).
- Three photoanodes, four electrochemical cells.

J-V characteristics in 1 M NaOH:

- Each photoanode provides over 2 V.
- Each electrochemical cell requires 1.55 V.
- Components in series add linearly.
- 3 photoanodes, 4 electrochemical cells, STH **20.7%**.

Stability in 1 M NaOH:

- >20% STH maintained for 40 hours, but epoxy not suitable for long-term stability.
- Single photoanode with better epoxy maintains very stable photocurrent for nearly 9 days.

Comparison with previously reported devices:

- Compares very favourably with other systems, both immersed and PV-EC.
- STH exceeded only by systems operating under concentrated illumination.

Conclusion and Outlook

Fully decoupled photoelectrodes:

- Constructed using cocatalyst foils.
- Efficient, stable, earth-abundant.
- Paves the way for immersed devices operating under concentrated illumination.

Supervisory panel	Water splitting group	Engineering	RSPhys admin
Siva Karuturi	Reddy Narangari	Astha Sharma	
Hoe Tan	Rowena Yew	Doudou Zhang	ARC
Chennupati Jagadish	Yonghwan Lee	Hongjun Chen	ARENA
Mykhaylo Lysevych	Julie Tournet		
	Tuomas Haggren	External	And everyone in EME!
ANFF	Asim Riaz	Bin Gong (UNSW)	
Fouad Karouta	Bikesh Gupta	David Mitchell (UoW)	
Kaushal Vora	Joshua Soo	Helena Wang (UNSW)	
Li Li		Purushothaman Varadhan	
Olivier Lem		(DIFFER)	
		Mihalis Tsampas (DIFFER)	

Melbourne Energy Institute

-

www.energy.unimelb.edu.au

CONTACT US

🛛 mei-info@unimelb.edu.au

Melbourne Energy Institute Level 1, Melbourne Connect, 700 Swanston St, Carlton VIC 3053

FOLLOW US

- 🥑 @MElunimelb
- In Melbourne Energy Institute

