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DIRECT GLOBAL GREENHOUSE GAS EMISSIONS BY ECONOMIC SECTOR
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The Global Carbon Cycle and what
it tells us about the need for
Negative Emissions
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Keller Lenton et al, Current Climate Change Reports 2018
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The Global Carbon Cycle
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UNITED NATIONS

Current Emissions & Paris PARIS CLIMATE
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Not all sectors can be easily decarbonised
(> 1/3 total GHGSs)

CO, Emissions CO, Emissions | Non-CO, Emissions




Emitted to space
235 W/m?

Negative Emissions

Carbon Dioxide Removal or Negative Emissions T o
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Negative Emissions Technologies (NETs)

“Often considered an enhancement of natural processes”

Technology
category

Implementation
options

Earth
system

Storage
medium

-

Afforestation & | Soil carbon Biochar Bioenergy with
reforestation | sequestration (BC) carbon capture
(AR) (SCs) & storage (BECCS)
Agro-forestry Crop residues
Boreal Ag%cclﬂgégal Dedicated crops
Temperate Livestock Dedicated inal
p practices edicated crops (marginal)
Tropical
Land

8.4

Above-ground
biomass

Capture via: Photosynthesis Chemistry
Direct air Enhanced weathering Ocean
capture & ocean alkalinisation fertilisation
(DACCS) (EW) (OF)
Suspended Silicate Carbonate Iron
amines rocks rocks fertilisation
! s ~N . =N
Wet Silicate N&P
calcination rocks fertilisation
| — \. J
Enhanced
upwelling
Ocean

Geological reservoirs

~

Minerals

Marine sediment
& calcifiers

Minx et al, 2018



Implementation & Integration

Not likely to be one simple global
solution, but a patchwork of
different forms of GE applied
which will interact with each other
over space and time

7-9 Gt
avoided
carbon
dioxide

Stabilised fossil fuel emissions

Fink (2013) after Pacala and Socolow (2004)

TOPICAL REVIEW

Negative emissions—Part 3: Innovation and upscaling

Gregory F Nemet"8®, Max W Callaghan?, Felix Creutzig>’, Sabine Fuss’®, Jens Hartman:
Hilaire>¢, William F Lamb’®, Jan C Minx>*®, Sophia Rogers' and Pete Smith’®

Earth System Technological
Challenges Challenges

Economic &
Regulatory
Challenges

Social
Challenges
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 Soil carbon — a reminder on the numbers

* How much could we sequester?

e And in Australia?

19
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giid  Soil carbon — a reminder on the numbers

Atmosphere
(829 + 10)
net land flux Cpa . net ocean flux
26+1.2 net atmosphenc increase: 4 2.3+0.7
| | | |
gross total respiration ocean-atmosphere gas
photosynthesis and wildfire exchange
$ $ i !
net land-use fossil fuels
change (coal, oil, gas) and
V((ef,%tg%?n 1.1+0.8 cement production

7.8+0.6

Land-use Change --

total rlpanan flux
belowground
carbon flux

30-80
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(700)
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Surface Sediments
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Source: https://www.fs.usda.gov/ccrc/topics/global-carbon
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How much could we sequester?

USA currently
0.7 Gt CO,/y
falling t0 0.35 in
2050

Can target maintaining
0.85 Gt CO,/y,
negative emissions of
0.15 Gt CO,/y
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Potential carbon removal in GtCO, y!
A Afforestation and reafforestation E Direct air capture
F Ocean fertilisation
C Biochar

D Enhanced weathering

Source: Sabine Fuss et al 2018 Environ. Res. Lett. 13 063002.

Private communication, Princeton University -Net -Zero America Project.
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@@ And in Australia

Mixed dryland farming

High rainfall
forest intensive

Pastoral /
low rainfall

Conservative estimate for
0.15% soil C increase to a
depth of 15 cm for 50% of
dryland and irrigated crop
land: 42 Mt C/y

MtC/y

\

Source: Totals from Carbon working group of the Restore Australia Technical Advisory Board. Conservative estimate from report by Adrian Lawrie.
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"1 b Challenging today.
\’aco s Reinventing tomorrow.

Bioenergy with CCS - Po
& Challenges

Nasim Pour


mailto:nasim.pour@jacobs.com

Bioenergy with CCS (BECCS)

L The negative emission potential of BECCS in the
] literature up to 20 Gt CO,/year

CO: Biomass Bioenergy Energy . .
atmphospheric -Energy crop  _ combustion Bioenergy potential up to 1000 EJ/ year
draw down -Residues ! or “
-Waste .
. Biofuel _ Heating
?’; conversion & —_—
AVAVAVAVA VA VAN COs Industry I Transport
Sant Power Intensification of enerqgy crops production could
Storage L SpEtie -
1 resultin:
-Deep _ Transport T
geologic -
formations g
» Severe competition between food, feed, and energy
Source: Bioenergy and Carbon Capture and Storage- Global CCS Institute, 2019 Perspective R . . o
N ’ ’ ’ -> Leading to controversial economic, ethical, and
* Currently five BECCS projects are operating, capturing CO, from environmental issues
ethanol production plants with a total capacity range of 0.1-1Mt
CO,/year negative emission. . . .
2!y J . o * Future bioenergy potential should be restricted to:
» So far, the only large-scale deployment of BECCS is the Illinois
Industrial CCS Project (IICCSP) with the CO, injection rate up to 1 Mt .
CO,/year. * No land-use expansion

* No increase in water consumption




Near Term BECCS in Australia: Waste to Energy

In 2016-2017 around 30 Mt of
organic waste and residues was generated in
Australiat.

® Municipal Solid Waste

m Construction &
Demolition

—

B Commercial &
Industrial

Agriculture

If all this organic waste/residues is utilised through
BECCS, it could:

* Generate 15-35 TWh energy per annum
* Remove 12-25 Mt CO, per annum

GWh

Renewable Energy Contribution
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e Emission Reduction

Waste-based BECCS could
contribute to up to 6% of the
NEM energy demand.

100%

80%

60%

40%

20%

0%

Emission Reduction (% vs 2005)

e e» o Emission Reduction with BECCS

Sustainable BECCS
facilitates & accelerates
emission mitigation.

1. Refer to: Australian National Waste Report 2018

©Jacobs 2020



Electricity Sector- Transition and Challenges
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W Hydro H Biomass Pumped Hydro

W Battery Storage Wind W Solar

der a “Baseline Scenario”, by 2050:

Coal-fired power capacity retired = 17 GW
Wind and Solar PV capacity added= 29 GW and 13 GW
Energy Storage (BESS & PHES) capacity added= 20 GW

Total capacity added to replace retired coal is more than 4
times of the peak demand

BECCS offers more (~30%) energy per MW installed than VREs

NEM Generation

79% 10%

2020 2030 2040 2050

mmmm Dispatchable RE
mm \/RE

s Thermal
Energy Storage
e Total Dispatchable Generation

Electricity sector is transitioning towards:

* Increasing uptake of VRE
» Lower share of dispatchable generation

- BECCS offers dispatchable renewable capacity to
improve grid stability and reliability

VRE: Variable Renewable Energy, i.e. Wind & Solar PV
Dispatchable RE: Hydro power and Bioenergy

Dispatchable Generation: energy technologies which can dispatch on demand , i.e. coal, natural gas, hydro, bioenergy and energy storage systems

©Jacobs 2019



Case Study- Victorian Electricity system
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Victorian Hourly Energy Mix vs Demand & Price
(June 2019)
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Time of the Day (30 min)

I Brown Coal Natural Gas I Hydro . Battery
Wind I Solar e D emand e P rice

Operational demand follows a “duck curve” shape,
peaking at 8amand 7 pm

Peak demand is supplied by marginal gas generators
which leads to:
o higher wholesale electricity price

Correlation between Demand and wind availability-per day per 30 min
(June 2019) 8am

7pm

=== Half-hourly
Demand/Max
Demand

= Wind
Availability

" Gas Gen/Max
Gas Gen

There is a pattern of low wind availability in June in Victoria, when demand is picking up
due to winter heating load

Solar PV generation is low (due to shorter daylight)

Low wind energy and very low solar PV energy for consecutive days means energy storage
could not fully cover the peak demand at cold winter evenings

Going forward (beyond 2030) our modelling is showing that as we transition to higher
levels of VRE, gas-fired generation is being used 16 hours per day every day of the working
week

o higher emission intensity if these plantsare not > BECCS could reduce the need for gas-fired power to cover the peak demand in
operated optimally low VRE periods

©Jacobs 2020



BECCS could be part of a sustainable solution for three major problems

Waste Sector

Electricity Sector

By utilising (currently disposed)
organic waste to generate energy,
BECCS could turn a negative
externality into a revenue stream

By generation dispatchable
renewable energy, BECCS could
enhance reliability and stability of the
electricity system

BECCS offers permanent removal of
CO2 from the atmosphere

©Jacobs 2020
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the foundational role of CCS
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CO, capture and storage fundamentals are well
known...safe, reliable, permanent storage.

Capture: Storage
Proven technology - been in No technical barriers: R e oT Celog ol Storuge Options e
commercial operation for CO, injection is the inversion of : 3::'3}*’3&:‘;‘1:;:317:‘;; R el
decades (amines 1930’s). oil and gas extraction); >700 NG a1 o 1 o com bt s tecovey

storage facilities worldwide.

Proven capture rates of 90% of
CO, emissions already reality;
costs and energy penalties will

Vi

improve with ‘learning by doing’.

The target formation (oil
& gas reservoir; deep
saline formation) must be:

Development of new * Porous Vt\)/llt:l good
membranes and adsorbents. permeability
e Below 800m in depth (CO,

remains in dense liquid-like

Transport: state)
* Secure for storage
| Pipelines - mature technology. * Thick and continuous over

la rger areas (StO re la rge Geological Storage Options
® volumes)

cge 1™ e e

30



Costs...vary with industry sector, location and project specs.

Concentrated CO, streams provide lowest cost near term opportunities. As technology and

Dilute Streams:

Capture = primary cost (~80%)
where CO, separation is not part
of production process (power
generation, steel, cement)

Concentrated Streams:

Storage = primary cost (~¥70%) where
concentrated CO, streams produced
as part of production process (NG,
bio-ethanol plants)

&5 process design advances and experience grows, dilute streams will expand CCUS opportunity.

Cost reductions through new

technologies and process designs:

* BD3->Shand PCC $45/tCO, captured)

* CO2CRC Otway Stage 3 CO, 75%
monitoring cost reduction

* CO2CRC 2" generation capture
technology — reduce capture cost

PC super-critical IGCC NGCC Iron and steel Cement

Biomass to
ethanol*

Natural gas
Processing*

Fertilizer*

Cost of CCUS in US-

124 21.5 254 21.5

"First of a Kind", USD/tCO, 97 89 77
avoided
Cost of CCUS in Australia-
1 1 11 194
USD/tCO, avoided 35 60 2 9

CO2\CRC

BUILDING A LOW EMISSIONS FUTURE

Data source. GCCSI, 2017 — Global Costs of Carbon Capture and Storage
*Figures represent the cost of CCS when applied to a highly concentrated stream of CO, produced as a by-product of the production process. Costs shown are not representative of CCS

applied across all streams in these industrial processes. '

— @ wam



Recognising economic value of CCS...the missing element

Project revenue or other financial benefit (policy) + continued cost reduction = builds
ﬁg commercial case to invest in CCS projects

Economic Value Project Commercial Drivers Recent Australian Developments

King Review

» ACCU’s (Australian Carbon Credits
Units)

> Finance (CEFC, ARENA)

Technology Investment Roadmap

Revenue (saleable product)

2 CO, utilisation (EOR)

Can achieve major emission
reductions from multiple
current industry sectors (LNG,
power, steel, chemicals,
fertilizer, aluminium) plus
future fuels (clean hydrogen)

Revenue (policy)

2 Carbon credits

Other financial

Key enabler for NETS 2 Early prioritization for CCUS

(BECCS, DACS)

» Tax concessions (45Q)

2 Capital grants, concessional

. finance &
s N ——

32



CCS PROJECTS 2019

B Capture — operational
@ Capture — completed _ , i ; . Santos

CTSCo

@ Co, EOR - feasibility | .
Vv CCS - feasibility  fl \
. w ¥ Wl “F Bridgeport

M Storage — operational
<= Storage hub — feasibility

O Major emission nodes
< Offshore CCS permits

| Basins with potential for
CO0, storage (Spatial data »
supplied by Geoscience Australia) - Loy Yang

CCS Flagship project

CarbonNet

© CO2CRC
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