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Wide applications of electrolyte-filled porous electrode

o Interconnected pore/voids in bulk electrode

o High ion-accessible surface area

o Practical/device level priority

Bulk and dense porous electrode

Electrochemical energy storage Water treatment

https://yatianqu.com

Electrochemical synthesis

MXene layers

Graphene membranes

Bulk and dense porous electrode:
Plate electrode

Green Energy & Environment 5 (2020) 303–321
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Challenges for high efficiency of porous electrodes 

Adv. Energy Mater. 9, 1901457 (2019) 

Future on-demand design, real-time monitor, prediction is difficult! 

Performance varied on multiple characteristics

Power density vs. Energy density Permeability vs. Selectivity Pore size effect at varied thickness 

10 mV/s 

Trade-off between performance metrics

J. Appl. Phys. 2020, 128, 131102 (2020)



Multiscale, multi-component, and dynamic system
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Highly hierarchical structure Dynamic working conditionsNew nanoscience 

o Ion pairing
o Superionic 
o Coulombic blockage o Unpredictable

PRL 106, 046102 (2011)

J. Am. Chem. Soc. 141, 4264−4272 (2019)

https://www.akcp.com

J. Am. Chem. Soc. 141, 8658−8669 (2019)



7

Content

o Challenges for high efficiency of porous electrodes 

o Why we need an across-scale modelling in the engineering strategy  

o Case study 
a. Importance of nanoscience: reviewing solvent effect in EDL theory 

b. Engineering electrode macrostructure in practical supercapacitor system 

o Outlook

How to in-time monitor and interactive with practical system?



8

Why we need a across-scale modelling?

Quantitative/semiquantitative description, engineering and prediction of nano science involved ion transport 
from nanoscale upscaling to bulk nanoporous electrodes towards target application

A across-scale digitalization platform

DFT

MD

Continuum

Overlooked new physics?
How to develop/bridge the models?

It is a pathway to quantitatively compare, engineer, and design practical system 
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Case-1 : Modern EDL theory 

Helmholtz model 
o Ions concentrate at interface 
o Linear potential drop
o Describe the screening effect 

Gouy-Chapman-Stern model 
o Introduction of diffuse layer
o Linear + exponential potential drop 

Bockris-Devanathan-Mullen model 
o Consider the hydration of ion
o Show fluctuations in potential drop 

o Diffusion layer well verified in 

experiments.

o Poor description of the molecular 

structures next to the interface.
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Case-1 : Modern EDL theory

A schematic of two graphene sheets in an 
aqueous electrolyte reservoir

o Graphene sheets: z = ±4 nm & x-y plane dimension: 4.156 × 4.254 nm2

o Aqueous electrolytes: 0.8 M NaBF4 and NaCl

o 9052 water molecules & 132 cation-anion pairs

o Charging densities: 𝜎𝑠 = ±0.00938 e/C-atom (i.e., 6.0 μC/cm2) and 0

o NVT ensemble; 300K; LAMMPS code

o The electric potential profiles: calculated by double integrating the spatial 

charge distributions via the Poisson equation

Simulation method and systems 

z
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Crucial surface water on PZC values of electrode 

+
−

*PZC: Potential of Zero Charge 

𝜑𝑃𝑍𝐶@𝑁𝑎𝐶𝑙 𝜑𝑖𝑜𝑛@𝑁𝑎𝐶𝑙 𝜑𝑤𝑎𝑡𝑒𝑟@𝑁𝑎𝐶𝑙

0.33 V -0.01 V 0.34 V

𝜑𝑃𝑍𝐶@𝑁𝑎𝐵𝐹4 𝜑ion@𝑁𝑎𝐵𝐹4 𝜑water@𝑁𝑎𝐵𝐹4
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Crucial surface water on electrode capacitance

∆𝜑𝑖𝑜𝑛 ∆𝜑𝑤𝑎𝑡𝑒𝑟

-0.45 V -2.24 V 1.79 V

∆𝜑ion ∆𝜑water

-0.43 V −1.47 V 1.04 V

Comparable water electric potentials to ion electric potentials 
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𝐶 =
𝑄

∆𝜑𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒
=

𝑄

∆𝜑𝑖𝑜𝑛 + ∆𝜑𝑤𝑎𝑡𝑒𝑟

NaBF4 electrolyte

NaCl electrolyte

Electrode capacitance 

NaBF4 electrolyte: 6.98 μF/cm2

NaCl electrolyte: 6.67 μF/cm2

If without considering surface water:

NaBF4 electrolyte: 2.04 μF/cm2

NaCl electrolyte: 1.34 μF/cm2



Particular water interfacial properties counter in bulk solution

Electrolyte system 

- Bounded by  ions

Pure water system 

Orientated by  surf ace

Surface water with enhanced density and layering structure Orientated surface water



Our developed modern EDL model 

∇𝜑 = 𝐸0 +
𝜎

𝐿O𝐶𝑤
𝜖𝑟,𝑠𝜖0∇

2𝜑 = −෍

𝑖

𝑞𝑖 𝑐∞𝑒
−
𝑉𝑖
𝑃𝑀𝐹+𝑞𝑖𝜑

𝑘𝐵𝑇

Orientated surface water region Electrolyte diffuse region

Surface potentialElectric potential profileIon distribution
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Case-2: Engineering electrode structure in practical supercapacitor system 

How to balance the hole density and size for improving rate performance of supercapacitor  

Background: the tortuous ion transport pathway in 2D laminate electrode, particularly dense and 

thick, compromise the rate performance

Electrolyte

Substrate

Electrolyte

Substrate 
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Vertical pore promote ion transport, but the accessible electrode surface would be sacrificed   
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Case-2: Engineering electrode structure in practical supercapacitor system 

Simulation methods and systems 

For electrolyte accessible region

𝜕𝛼𝑐𝑖

𝜕𝑡
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For the MoS2 phase/part in the electrode
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Case-2: Engineering electrode structure in practical supercapacitor system 

Ion accessibility in varied electrode structures

Thickness: 2 μm, height: 60 μm, hole size: 5 μm/100 nm
𝑉app

Typical charging rate dependent CV curves  

P-Film-10 
Interspace: 10 um

Vertical channel: 5 um

P-Film-20
Interspace: 20 um

Vertical channel: 5 um

P-Film-30
Interpace-30 um

Vertical channel: 5 um Pristine
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Case-2: Engineering electrode structure in practical supercapacitor system 

If electrode without mass loading loss

100 μm

If electrode has mass loading loss

P1-100nm 

Interspace: 10 um

Vertical channel: 100 nm
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Case-2: Engineering electrode structure in practical supercapacitor system 

Verified by experimental results 
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How to in-time monitor and interactive with practical system?

A future digital twin of porous electrode based applications 
with combination of data science, IOT techniques, and experimental system

Our 2D membrane electrode as a good 
experimental platform  

Adv. Mater. 2019, 190456

DFT

MD

Continuum

Circuitry

IOT techniques
Data science 
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Conclusion

o We proposed a digital engineering strategy for porous electrode based 
applications towards high energy efficiency

o A across-scale model is introduced, which considering the crucial surface 
water for improved description of surface potentials and ion interfacial 
distributions, transferring the nanoscale features into macroscopic 
framework.

o A mesoscale dynamic model is introduced, which can simulate the pore 
structure and charging rate dependent ion storage process in 
supercapacitor systems. This model demonstrates a capability to assist 
porous structure engineering for high rate performance of supercapacitors.
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Our recent works: Spatiotemporal probing ion distribution in supercapacitor system 
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Crucial surface water on electrode capacitance

𝜑𝑃𝑍𝐶@𝑁𝑎𝐶𝑙 𝜑𝑖𝑜𝑛@𝑁𝑎𝐶𝑙 𝜑𝑤𝑎𝑡𝑒𝑟@𝑁𝑎𝐶𝑙
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