MEInetwork23

Melbourne Energy Institute

MEInetwork23 Seminar #2:

Uranium mining and refining

Speaker: Dr Neilesh Syna, Senior Hydrometallurgist, ANSTO

Moderator: Assoc Prof Kathryn Mumford, Head of Department, Chemical Engineering

8 June 2023

@MEIunimelb #MEInetwork23

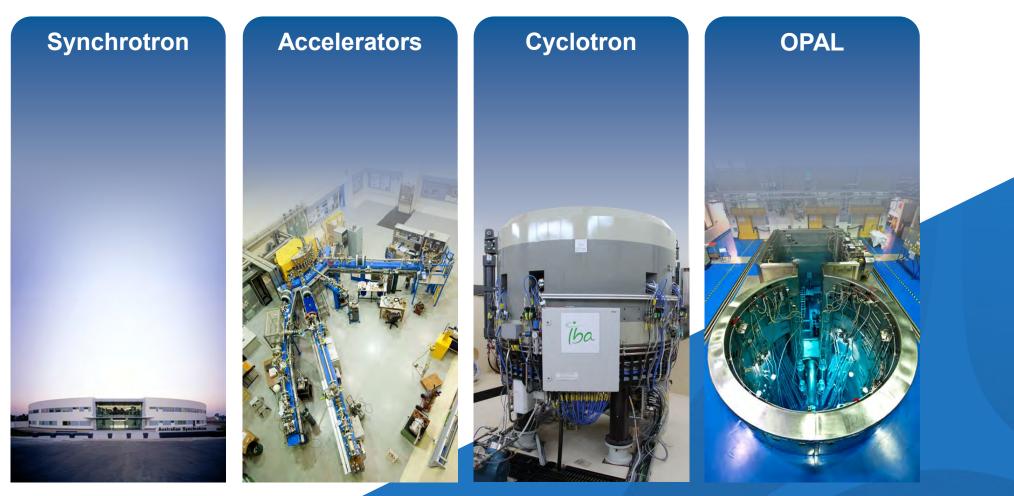
MEInetwork23 Seminar Series

Seminar topic	Month
Crude oil and product supply chains - Nicholas James, VIVA Energy	Recording available online
Uranium mining and refining	8 June
Energy commodity trading	6 July
New energy commodities and critical minerals	10 August
Fiscal policy to support future energy commodity exports	7 September

For updates, subscribe to the MEI newsletter. Visit: energy.unimelb.edu.au

Uranium mining and milling to UOC

Neilesh Syna, ANSTO Minerals Kathryn Mumford, Melbourne Energy Institute


MEI*network*23 8 June 2023, Melbourne, VIC

Science. Ingenuity. Sustainability.

Critical Infrastructure to deliver high impact science

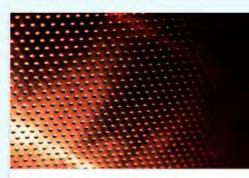
Science. Ingenuity. Sustainability.

Commercial Products and Services

Business Development

Detection and Imaging

Innovation and Commercialisation


Minerals

Nuclear Waste Solutions

Radiation Services

Integrated Business Planning

Silicon Irradiation

Science. Ingenuity. Sustainability.

Minerals Business Unit

60+ personnel

with engineering, metallurgy, mineralogy, chemistry experience

40+ years experience

providing practical solutions and innovative technology to industry

20+ global client locations

supported by our unique capabilities and facilities

Continuous Mini-Pilot

Background

Fast Facts

Short Break with Questions

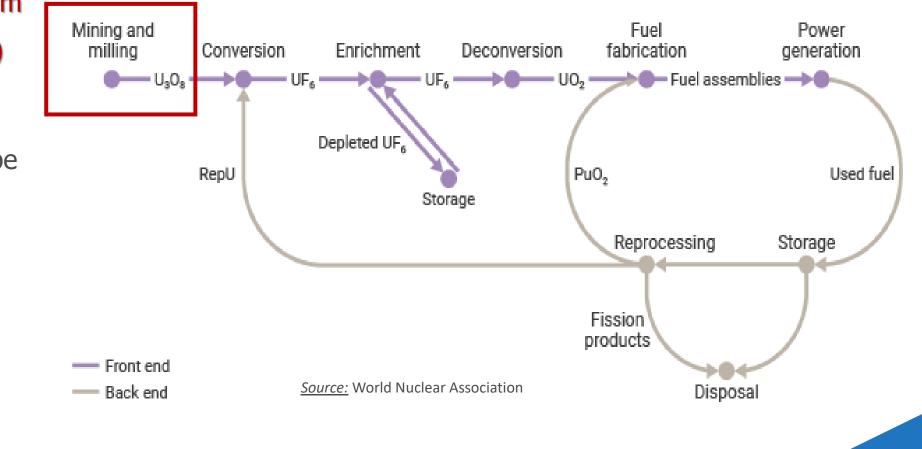
Different processing routes

Short Break with Questions

Recent innovations

Australia operations & projects

Future challenges & opportunities



Nuclear power generation

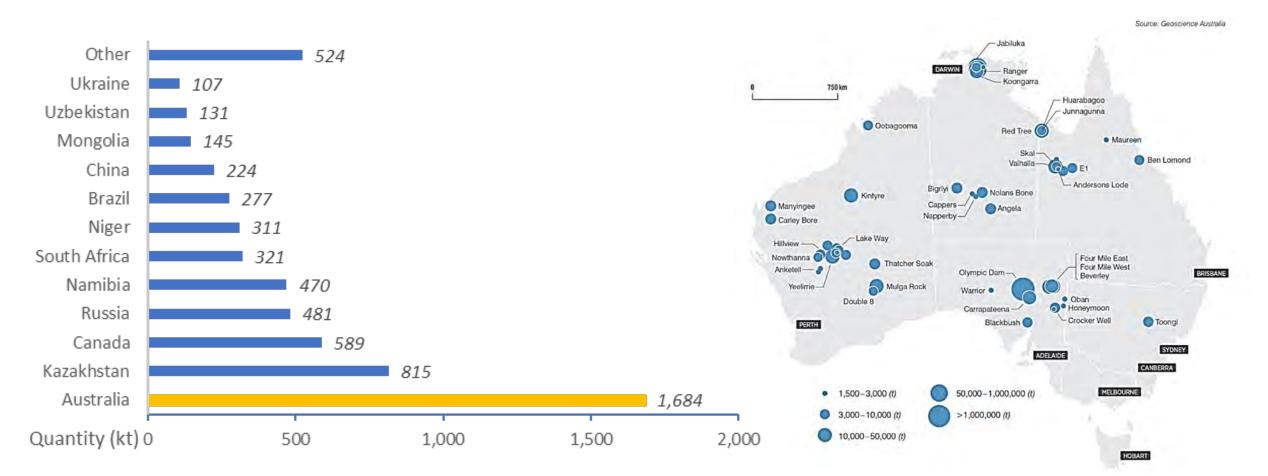
Nuclear fuel cycle

- Exploration, Mining and
- Milling to produce Uranium Oxide Concentrate (UOC)
- Conversion to UF₆
- Enrichment of ²³⁵U isotope
- Fuel (UO₂) fabrication
- Power generation
- Spent fuel storage
- Reprocessing (U and Pu recovery)
- Waste storage and disposal

ANSTO


Uranium market pricing

<u>Source:</u> BHP


- Spot contracts
- Long-term contracts
- Financial instruments active in spot market

LT price (~US\$60-80) crucial to incentivise new mine development

Resources (2021)

Source: World Nuclear Association

ANSTO

(47 342 tU, as of 1 January 2021)

Canada

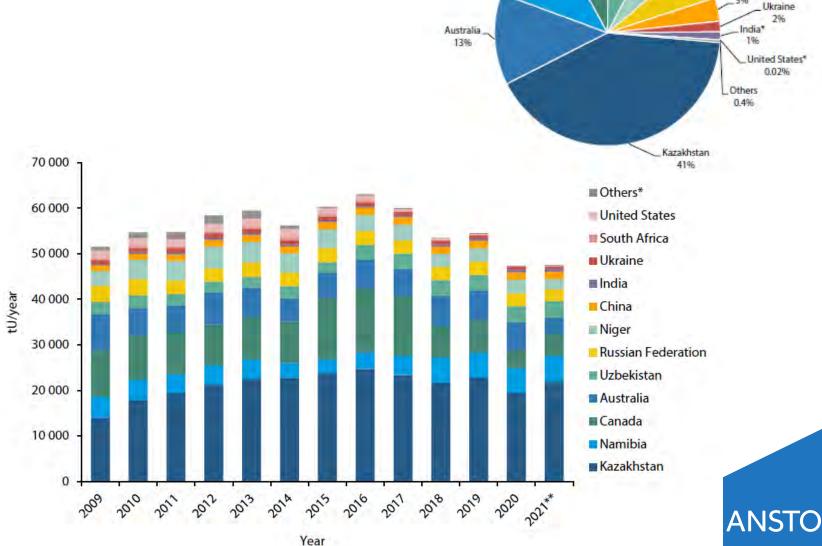
Namibia

12%

Uzbekistan*

Niger

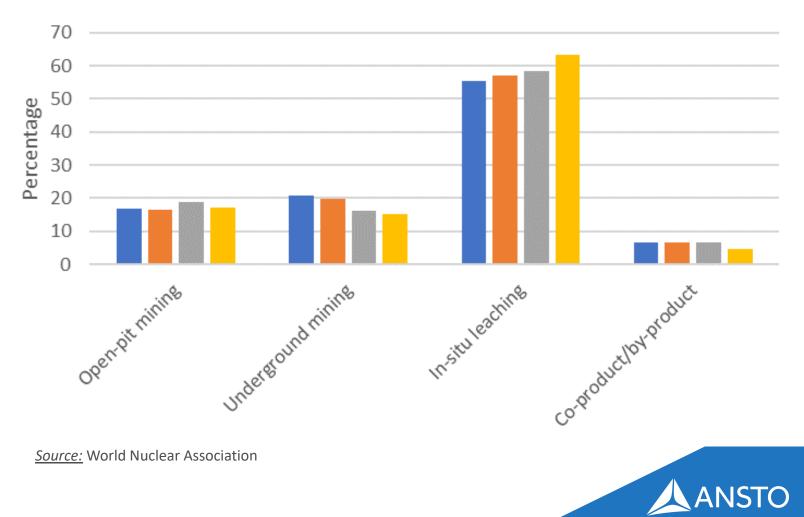
6%


Russia 6%

> China* 3%

UOC production (2020)

- 17 countries (Australia is 2nd)
- 7 countries accounted for 94%
- From the deserts of Africa,
 through the plains of Central
 Asia to the arctic tundras of
 Canada


Source: OECD U Red book (2022)

Methods of production (2021)

- Open pit, underground, insitu leach and co-/byproduct
- In-situ leach is the largest and continues to grow (underground mining in decline)
- Co-/by-production typically from gold, base metals (copper and nickel) and phosphate operations

■ 2018 ■ 2019 ■ 2020 ■ 2021

Producers (2021)

- 10 companies market 94% of global mine production
- 80% of global production
 concentrated within 6 companies
- 5 are State Own Enterprises

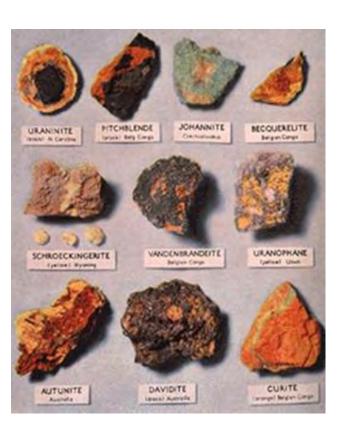
県団

Break Time: Questions?

Process selection

Dependent upon:

- Resource
- Mining method
- Ore mineralogy
- U grade
- Geographical location
- Economics
- Laws and regulations
- Schedule, . . .



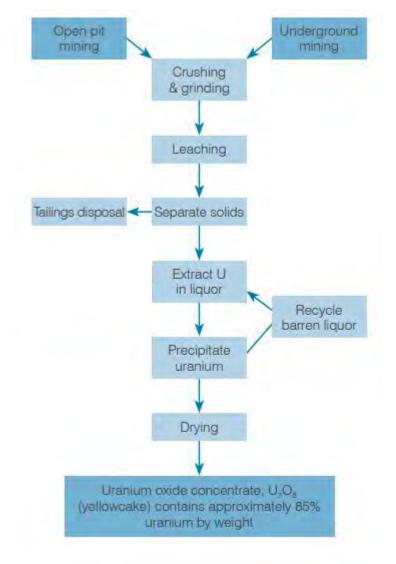
Mineralogy

Mineralisation:

- Vanadates
- Carbonates
- Oxides
- Phosphates
- Arsenates
- Sulphides,
- Molybdates, . . .

<u>Source:</u> Mindat

Uraninite


Principle Uranium minerals:

- Pitchblende
- Uraninite
- Carnotite
- Coffinite
- Brannerite
- Torbenite
- Wulfenite, . . .

ANSTO

Conventional process

- 1. Mining
- 2. Crushing & grinding
- 3. Leach
- 4. Solid-liquid (S/L) separation
- 5. Purification & enrichment
- 6. Precipitation & dewatering
- 7. Drying & calcination
- 8. Packaging & transport
- 9. Waste treatment

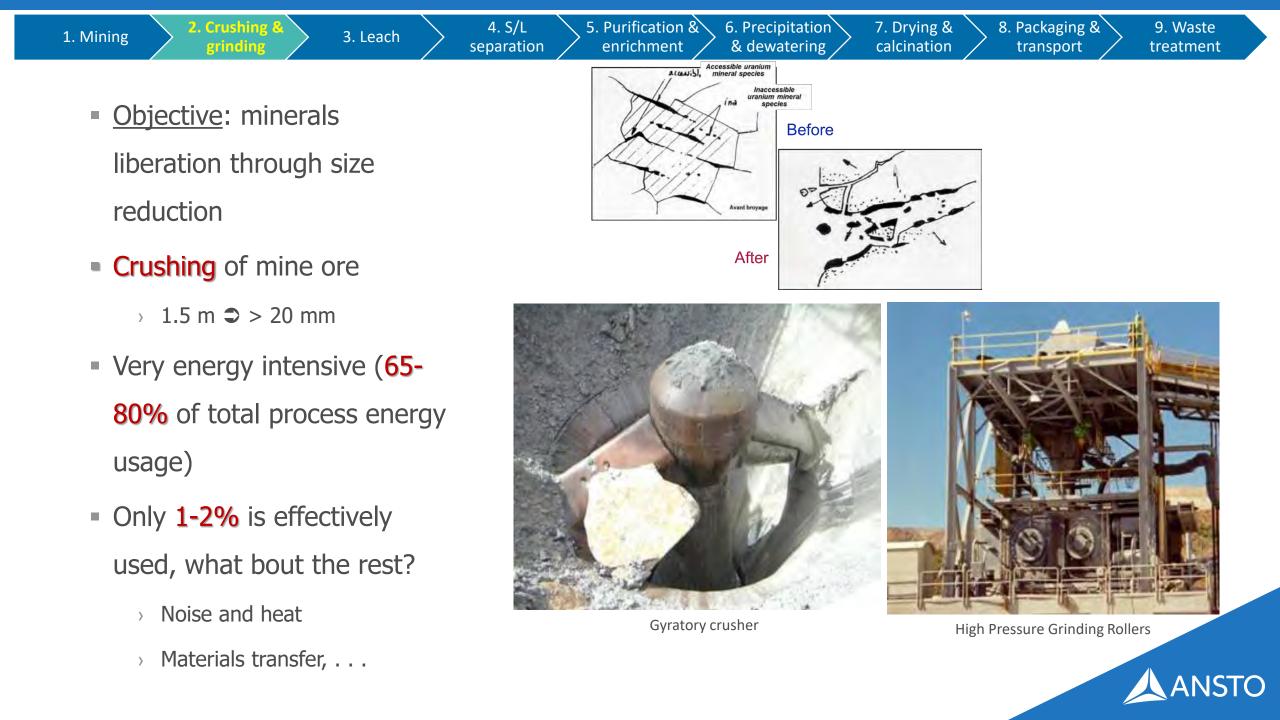
Source: World Nuclear Association

Open-pit mining

Source: Energy Resources Australia

- Near surface ores (< 100 m)</p>
- Requires heavy equipment for soil and waste rock removal before ore access
- Pros:
 - $\,\,$ > Better ventilation, less costly than UG
- Cons:
 - > Huge footprint, expensive remediation

Underground mining

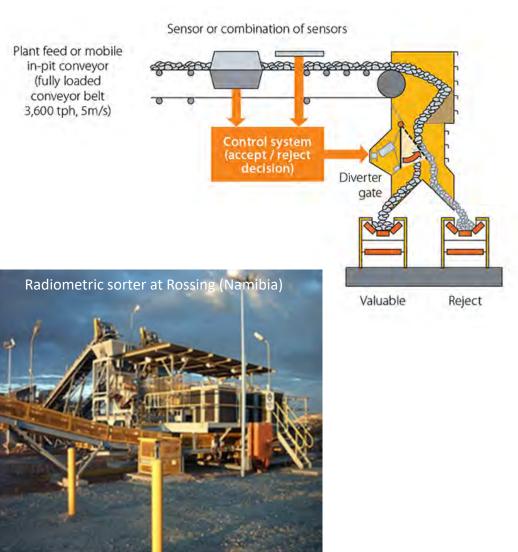

- Deep orebodies (> 100 m)
- Requires vertical shafts to ore depth followed by creation of tunnels, ramps and chambers

McArthur River (Canada)

- Pros:
 - > Smaller footprint, less waste
- Cons:
 - > Expensive operation and remediation

Source: Cameco Corp

- Crushed ore storage prior to beneficiation and/or grinding circuits
- Options of open or covered storage
- Ensures undisrupted feed to downstream process units


ANSTO

<u>Source:</u> Orano

- **Objective:** Increase U grade whilst reducing tonnage treated
- Available techniques include:
 - Sizing >

- Gravity spirals
- Magnetic & electrostatic
- Flotation
- Sorting >
- Very few U ores are amenable to the above techniques except for (radiometric) sorting
 - Rossing (Namibia)

ANSTO

Source: Applied Sorting Technologies

4. S/L 5. Purification & separation enrichment

6. Precipitation & dewatering

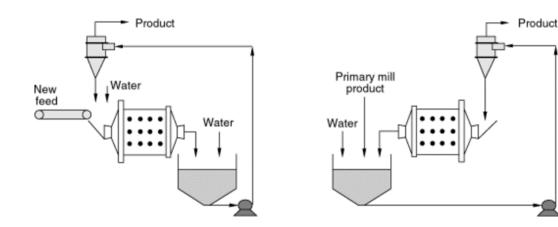
7. Drying & 8. Packaging & calcination

transport

9. Waste treatment

2nd stage grinding circuit:

2. Crushing &


grinding

1. Mining

(Autogenous/Semi-autogenous) mills, $> 100 \mu m$ >

3. Leach

- (Ball/Rod) mills, $> 30 \mu m$ >
- (Stirred/Tower/ISA) mills, >1 µm >
- Operated either wet or dry
- Use grinding media (metallic or ceramic balls)
- Typically operated in closed loop arrangement

Source: Energy Resources Australia

Source: Orano

5. Purification & 6. Precipitation enrichment & dewatering

7. Drying & 8. Packaging & calcination

transport

9. Waste treatment

Objective: Chemical dissolution (leach) of U minerals & limiting gangue dissolution

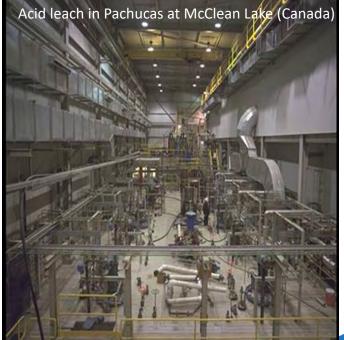
4. S/L

separation

- Reagent choice of:
 - Acid (most common)

2. Crushing &

grinding


- Alkaline (for high acid consuming ores, e.g. carbonates)
- Variables include:
 - > Mineralogy, grade, time, temperature, . . .
- Options:

1. Mining

- Dynamic leach (vat, Pachuca, agitated tank, autoclave)
- Heap leach
- In-situ leach

Source: Orano

Source: Orano

1. Mining

3. Leach

4. S/L separation

5. Purification & 6. Precipitation enrichment & dewatering

7. Drying & calcination

9. Waste treatment

- Objective: Separation of U bearing liquor from leach solids for further processing
- Variables include:

2. Crushing &

grinding

- > Leach method, clay content, particle size, water availability, solution grade, costs, . . .
- Options:
 - Thickening followed by filtration (belt, drum, pressure, . . .)
 - Counter-current decantation (CCD)
 - Resin-in-Pulp (RIP)

Source: Orano

8. Packaging &

Source: Paladin Energy

1. Mining

> 3. Leach

4. S/L separation

5. Purification 6. Precipitation & dewatering


7. Drying & calcination 9. Waste treatment

<u>Objective:</u> Purification &
 concentration of U from contaminants

2. Crushing &

grinding

- Variables include:
 - Solution flow, grade, pH,
 impurities, . . .
- Options:
 - > Solvent extraction (SX)
 - » Mixer settlers, pulsed columns
 - > Ion exchange (IX) resins
 - > Resin-in-Pulp (RIP)

Source: Energy Fuels Inc.

<u>Source:</u> Dow

<u>Source:</u> BHP

8. Packaging &

transport

Source: Heathgate Resources

6. Precipitation

& dewatering

9. Waste treatment

Resin-in-pulp (RIP)

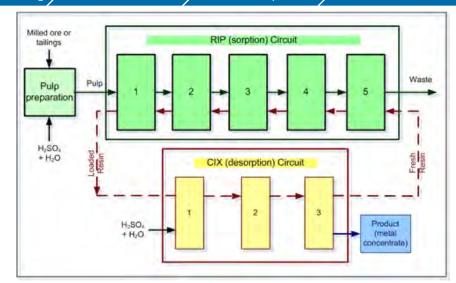
2. Crushing &

grinding

1. Mining

Negates the need for S/L step before contact

3. Leach


4. S/L

separation

5. Purification

& enrichment

- Process pulps with 50wt% solids
- Coarser resin beads retained in baskets
- Consists of 2 (adsorption and desorption) circuits
- Higher CAPEX but lower OPEX (over standard IX)
- Issues with resin fracture and U loss

Source: Lotus Resources

7. Drying & calcination 8. Packaging & transport

9. Waste treatment

 <u>Objective</u>: Transform U from solution to solid phase by increasing solution pH

3. Leach

4. S/L

separation

5. Purification &

enrichment

6. Precipitation

& dewatering

Variables include:

1. Mining

- Solution flow, environmental regulations, reagent availability, temperature, converter requirements,
- Reagent options include:

2. Crushing &

grinding

- > Ammonia, peroxide, caustic, lime or milk of magnesia
- Tank precipitation (either in batches or continuously) followed by filtration
- Step can be repeated to further reject more impurities (Mg, Na, Zr, etc.)
- Converters prefer UO₄ or U₃O₈ concentrates

Source: Orano

5. Purification & 6. Precipitation enrichment & dewatering

ROX. 10 m

7. Drying & calcination

8. Packaging & 9. V transport trea

9. Waste treatment

ANSTO

 <u>Drying objective</u>: Displace water from wet cake and crystalline water

3. Leach

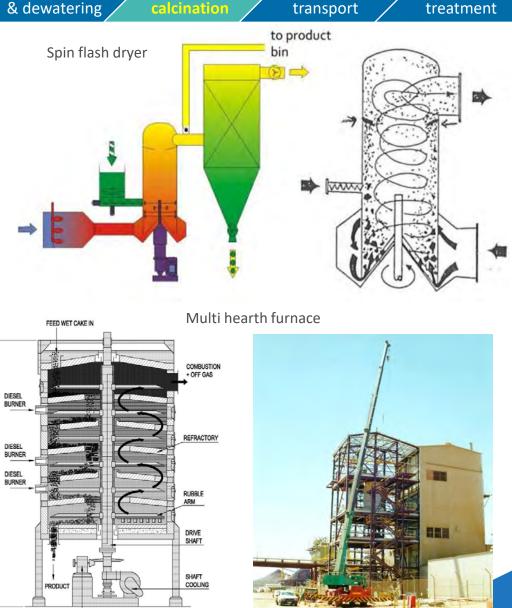
4. S/L

separation

Variables include:

2. Crushing &

grinding


1. Mining

- > Precipitate type, temperature, . . .

 $UO_4.2H_2O \leftrightarrow UO_4 + 2H_2O$

- Calcination objective: Convert to final product
- Variables include:
 - > Product type, temperature, . . .
 - » e.g. ammonia precipitate (ADU) at 650 800°C

 $9(NH_4)_2U_2O_7 \leftrightarrow 6U_3O_8 + 14NH_3 + 15H_2O + 2N_2$

DRIVE

- Objective: Package end product for delivery to converters (chosen by customers)
- Automated to minimise radioactive contamination and exposure

Source: Adelaide Control Equipment

<u>Source:</u> Orano

1. Mining

grinding

4. S/L separation

5. Purification & 6. Precipitation enrichment & dewatering

7. Drying & calcination

- Uranium oxide (U_3O_8) is sold via both contract and spot market
- Each sale is controlled through the U3O8 specification
 - Some converters have their own specification
 - An increasing number use ASTM C967 (for naturally occurring uranium, minimum 65 % U or 85 % U3O8)

Limits:

- Without penalty: impurities up to indicated level attract no cost penalty
- Without rejection: above this the consignment can/will be rejected
- In between: Sliding scale of cost, based upon element and concentration, subtracted from the unit price.
- Why U-234 limit?
 - Remember natural abundance U-234 is 0.0055 % (55 ppm)
 - U-234 absorbs neutrons and affects the breeding properties of the fuel
 - Shortens life of fuel rods
 - Shorter half life means heightened exposure control
 - Compensate by increasing U-235 content in fuel (issues, plus cost)

C967 - 13

8. Packaging 8

transport

Impurity	Maximum Concentration Limit (Mass %, Uranium Basis) ⁴		
	Limit Without Penalty ^B	Limit Without Rejection	
As	0.05	0.10	
В	0.005	0.10	
Ca	0.05	1.00	
Carbonate	0.20	0.50	
F	0.01	0.10	
Halogens ^D	0.05	0.10	
Fe	0.15	1.00	
Mg	0.02	0.50	
Moisture	2.0	5.0	
Mo	0.10	0.30	
P	0.10	0.70	
к	0.20	3.00	
Si(calculated as SiO ₂)	0.50	2.50	
Na	0.50	7.50	
S	1.00	4.00	
Th	0.10	2.50	
TI	0.01	0.05	
V	0.06	0.30	
Zr	0.01	0.10	
234U	56 ^F	62 ^F	

Source: ASTM

1. Mining

4. S/L separation

7. Drying & 8. Packaging & calcination

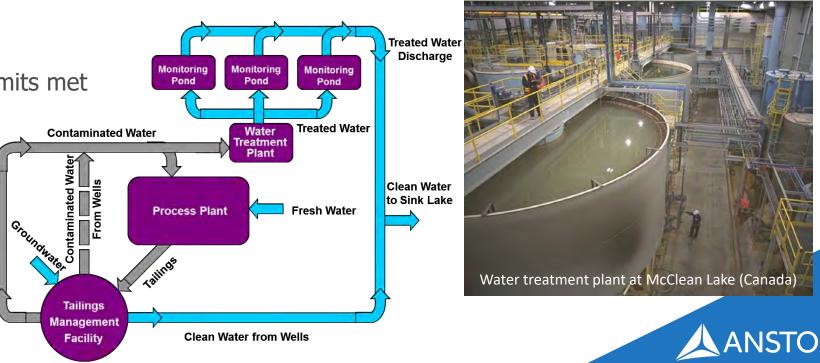
transport

9. Waste treatment

Objectives:

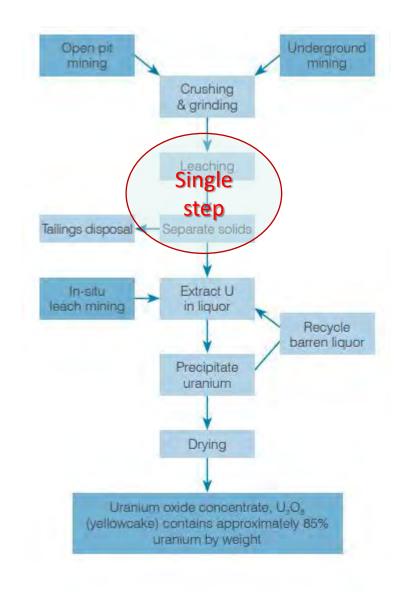
Disposal of **solid tailings** compliant to local laws

2. Crushing &


grinding

Disposal of liquid effluents by immobilising environmental contaminants (heavy metals and radioactive) and ensuring local limits met for water discharge

» e.g.
$$Fe^{3+}$$
 + $3OH^-$ → $Fe(OH)_3$ ^{Mater} Mater Mate



Source: Orano

Heap leach process

- 1. Mining
- 2. Crushing & agglomeration
- 3. Heap leach
- 4. Purification & enrichment
- 5. Precipitation & dewatering
- 6. Drying & calcination
- 7. Packaging & transport
- 8. Waste treatment



Heap leach process

- Suitable for low grade ores
- Ores crushed and agglomerated with reagents then built into heaps and irrigated with leach solution
- Leach solution recovered from collection basin
- Slow reaction rate (3 9 m)
- Moderate CAPEX with low OPEX
- SX or IX used for U recovery
- Used in Niger & Finland

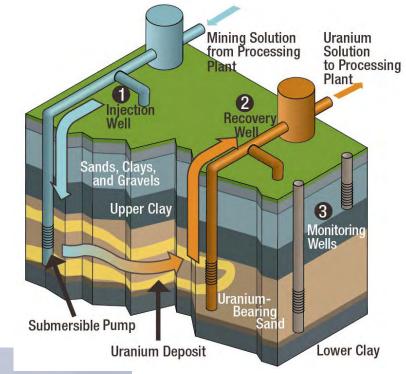
The Heap Leach Recovery Process

Stacking start at Somair (Niger

In-situ leach process

- 1. **ISL** involves drilling, well preparation & cell irrigation
- 2. Purification & enrichment
- 3. Precipitation & dewatering
- 4. Drying & calcination
- 5. Packaging & transport
- 6. Waste treatment

Source: World Nuclear Association


In-situ leach process

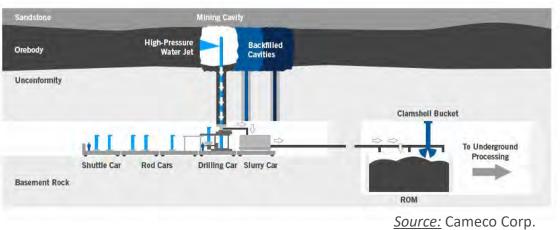
- Suitable for ore bodies
 sandwiched between clay layers)
- Reagents injected into ore body (18-24m)
- Leach solution is pumped out for
 U recovery
- Monitoring wells check for chemical escapes
- Low CAPEX and low OPEX
- Little waste generation & minimal surface ground disturbance
- IX used for U recovery

Production well at Tortkuduk (Kazakhstan)

Source: Nuclear Regulatory Commission

Well field at Smith Ranch-Highland (USA)

Source: Cameco Corp.



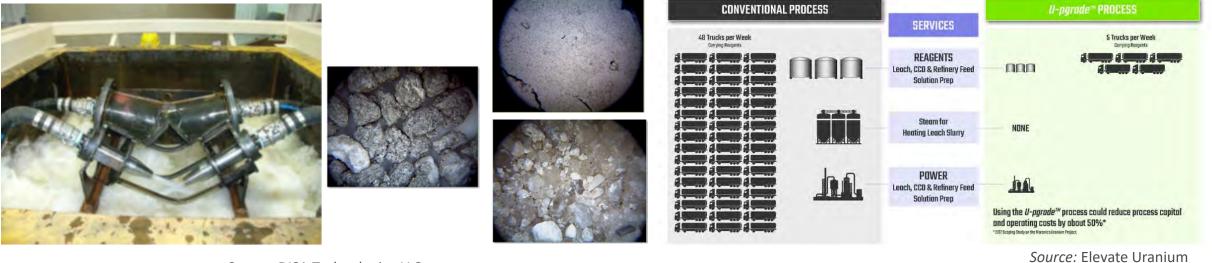
Break Time: Questions ?

Recent innovations in mining

Jet boring

- UG mining technique used at Cigar (Canada)
- Freezing the ore and surrounding rocks using chilled brine (-40°C) in large pipes
- Production tunnel created for jet boring system entry
- Pilot hole drilled through orebody then jet boring nozzle inserted
- High pressure water jet extracts ores
- Places workers UG

SABRE


<u>Source:</u> Orano

- Surface Access Borehole Resource Extraction
- Non-entry surface based mining technique
- Benefits of:
 - > Economics (flexibility and scalability)
 - > Safety (health and injury minimised)
 - > Environmental (small footprint and lower water and energy demand)
- Potential for Midwest project (Canada)

Recent innovations in processing

Abrasion based beneficiation technique

Source: DISA Technologies LLC

- 2 proponents
 - U-pgrade[™] (Elevate Uranium) and High Pressure Slurry Ablation technique, HPSA (DISA Technologies LLC)
- Uses the forces of abrasion, elastic compression and rebounding
- Benefits of:
 - Lower mine haulage
 - Lower milling costs (throughput, reagents, energy)
 - Better environmental outcomes (lower (mill) tailings and cleaner (mine) waste dumps)
- Tested using Colorado (USA) sandstones and Namibian calcretes

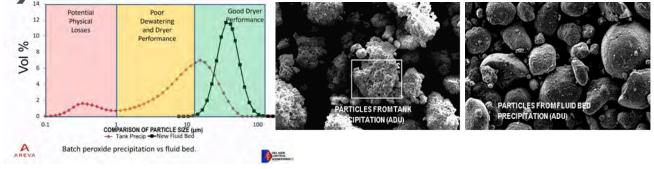
Recent innovations in processing Nanofiltration Saline IX (ANSTO)

Source: BMS Engineers

- Filtration technique employing membranes under high pressure
- Applied for reagent recovery
- Used at Langer Heinrich (Namibia) & Kayelekera (Malawi)

Source: Boss Resources

NSTO


- Ideal for locations with saline (Cl) water
- High capacity Strong Base Anion (SBA) resin binds strongly to U
- Patented U elution method developed
- To be applied at the restart of Honeymoon (SA)

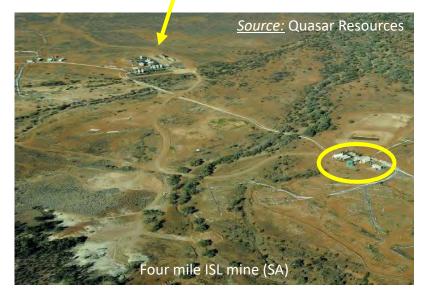
Recent innovations in processing

Fluidised Bed Precipitation (Orano)

Particle Size Distribution

- Larger particles

 better S-L separation
- Less fines **C** reduced dust generation
- Higher bulk density
 transport savings
- Used at KATCO JV (Kazakhstan) and Somair (Niger) operations

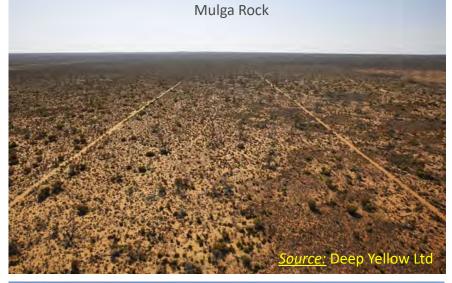


<u>Source:</u> Orano

Source: BHP

Australian operations (2021)

Beverly ISL mine (SA)



Australian projects (2021)

<u>Source:</u> Toro Energ

Source: Geoscience Australia

Future challenges & opportunities

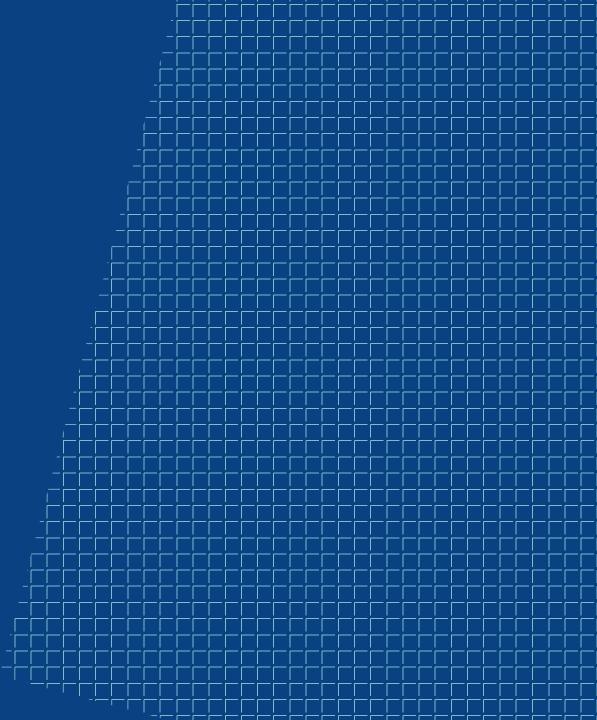
- Process & economics:
 - » Treat lower grade ores and to reprocess old tailings
 - » Produce U as a by-product (e.g. Au, Cu, REE, . . .) and/or produce by-products from U deposits (e.g. Co, Ni, V, Sc, Re, . . .)
 - » Adopt and integrate alternative process technologies (e.g. bioleach, . . .)
- Safety: Provide safe work conditions & reduce worker exposure,
- Environment: Reduce impacts & consider sustainable development.
- Laws and Regulations: Adapt to changing landscape
- Social licence: Transparent engagement with local population and the wider public

Thank you. Questions?

Melbourne Energy Institute

-

www.energy.unimelb.edu.au


CONTACT US

Melbourne Energy Institute
 Level 1, Melbourne Connect,
 700 Swanston St, Carlton
 VIC 3053

FOLLOW US

- 🔰 @MElunimelb
- Melbourne Energy Institute

